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Lattice gasses are models of gasses where the panicles move in dis-
cretized space and time, A lattice gas model is defined by a lattice and
a set of rules defining particle movements. The hydredynamical equa-
tions of the gas are then found as successive terms in a perturbation
expansion of the lattice Boltzmann equations. A lattice gas has been
introduced in a previous publication, where it was shown that the
lowest order term in the above-named expansion is the equation of
one-phase flaw in a homogeneous porous medium with two indepen-
dent permeability components. The model assumes that the lattice gas
density, as characterized by a density scale, is small. This paper presents
a generalization to inhomogenous media with three independent per-
meability components. The main contribution of the paper is, however,
a calculation of the flow equation of the lattice gas to the next order in
the perturbation expansion of the Boltzmann equations, showing that
correction terms proportional to the gas density appear in the per-
mesability coefficients. A numerical example is given, in a case where
the exact solution is known. The numerical results contain errors due to
statistical fluctuations and deviations due to the correction terms
mentioned above. For the particular example, the relative deviations are
shown to be in the neighborhood of 5% for a 600 x 600 lattice and a
density scale of about 0.1.  © 1993 Academic Press, nc.

L. INTRODUCTION

A lattice-gas model for the simulation of the equation of
flow in a porous medium has recentiy been presented [4].
It consists of a lattice and of a set of rules, chosen in such a
way that the density of the resulting lattice gas satisfies the
differential equation of one-phase flow in a porous medium.
The method of solution consists simply in measuring
the density of the particles at a given place and a given
time-step.

The porous medium simulated in [4] s homogeneous—
all parameters are space independent—and slightly
anisotropic—the permeability tensor is diagonal, with two
independent components. The present paper has two main
goals. The first is to introduce some generalizations that
make it possible to simulate a porous medium which is not
homogeneous and which has a diagonal permeability tensor
with three independent components. The second is related
to an essential assumption underlying the lattice gas model
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of [4]. namely that of low density. Indeed, the differential
equation governing the flow of this gas is obtained as the
lowest order in a perturbation expansion of the lattice
Boltzmann equations, where the expansion parameter is,
effectively, the density. It is consequently important to be
able to estimate the error attached to a given, necessarily
finite, vaiue of the density. This is done by getting the equa-
tion of motion which results from the inclusion of the next-
to-lowest order in the perturbation expansion of the
Boltzmann equations, thus making explicit the first terms
that are neglected by the lowest order approximation.

The flow equation for an inhomogeneous and anisotropic
porous medivm is derived in Section 2, thus establishing the
equation that one wishes to simulate. The lattice gas model
itself is presented in Section 3, with the necessary generaliza-
tions to the mode} of [4]. The resulting Boltzmann equa-
tions and their perturbation solution are given in Section 4.
Finally, in Section 5, the lattice gas method is applied to a
specific problem with a known analytical solution. The
deviations of the numerical results from the exact solution
are estimated for a given scale of the density.

2. FLOW EQUATION FOR INHOMOGENEQUS,
ANISOTROPIC POROUS MEDIA

The equation of one-phase flow in porous media, derived
in [4] in the framework of continuum mechanics for
the homogeneous case, is here generalized to the
inhomogeneous and anisotropic case. To conform with the
notation of the rest of this paper, space coordinates are
denoted by (x}, x5, x3) and time is denoted by . A right-
handed coordinate system is assumed, with the x, axis
pointing upwards [4]. Partial differentiation with respect
to x; is sometimes denoted by d; and partial differentiation
with respect to ¢ by @;. The summation convention is used
for Latin indexes.

The Now equation can be derived by combining the mass
conservation equation, Darcy’s law, and an equation of
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state. Mass conservation in a porous medium with porosity
@ is written

3(0p)+8{(pg,) =0, (1)

where p is the fluid density and ¢, are the components of the
Darcy velocity. Considering a diagonal permeability tensor
with three components K, K., and K, and denoting the
acceleration due to gravity by g, the viscosity by u, and the
pressure by p, Darcy’s law can be written

g,=—u 'K, & p,
g, = —p 'Ky p+ pg),
g:=—p " 'K;35p.

(2)

Introducing 6 = @p, v,=g,/w, and the total compressibility
f=a""dajdp, and following the derivation outlined in [4],
one finds that o obeys
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It is shown in [4] that a lattice gas exists, such that its .

density satisfies Eq. (3) with constant coefficients and with
K, = K;. It is shown below that a slight generalization of the
assumptions of [47 allows simulation of Eq. (3) as it stands.

3, THE LATTICE GAS MODEL

The essential ingredients of the lattice gas model have
been presented in [4]. They are repeated here for complete-
ness, together with the necessary generalizations.

The lattice is square for the two-dimensional model, with
four possible directions for particle movement, indicated, as
in [47, by the four unit vectors e,, .., e,. The vertical
downward direction, singled out by gravity, is along e4. In
the three-dimensional model the lattice is cubic, and the two
extra directions for particle movement are indicated by e
and e,. The unit vectors along the coordinate axes, i,, i-,
and iy, point, respectively, along e, e,, and es. See Fig. 1.

In the interval of a time step, each particle jumps from a
node to one of its nearest neighbors. The distance between
two nearest nodes is denoted by A and the duration of a
time-step is denoted by 1. The magnitude of the particle
velocity is then ¢ = A/z. A particle is said to be of type a if its
velocity is ce,. The dimensionality of the model is denoted
by d:d=2or3.
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FIG. 1. The velocity directions (left} and the coordinate axes (right).

Three types of coordinates will be used in the sequel:
{x}, x5, x5,1) have dimensions of length and time;
{x;,x,, x5, 1) are dimensionless, with a special scaling
aimed at the perturbation expansion of the lattice
Boltzmann equations; finally (&,, &5, &5, 8) are dimen-

" sionless, with 4 and t taken as units of length and time.

The rules for particle movement are as foliows (see
Fig. 2):

1. At a given node and at a given fime-step, not more
than one particle can be found with a given type. There are
thus at most 24 particles at a node.

2. A particle which is alone at a node at time /', is at one
of the 24 nearest nodes at time ¢’ + 7, with a velocity point-
ing away from the node it just left. Transitions occur with
given probabilities: there is a probability p_, that a particle
which is of typex at r"is of type B at ' + 1.

3. If there is more than one particle at a node at time '
then, at time ¢’ + 7, each particle has jumped to the nearest
node in the direction of its time-t' velocity (no collisions),
except in the following situation: if there are exactly two
particles at a node at ¢, and one of them is of type 2, then

(Paa)

- =>
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FIG, 2. [llustrations of the rules governing particle movements.
Directions e; and e, are not shown, Time is 1 (¢'+ 1) for the diagrams at
the left (right). The symbols in parentheses give the probabilities for the
shown transitions to take place. .
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at ' + 1 the probability is y that each particle has jumped to
the nearest node in the direction opposite to its time-t’
velocity (and the probability is 1 —y that each particle has
jumped to the nearest node in the direction of its time-t’
velocity).

The accomodation of boundary conditions, and the simula-
tion of sources and sinks, require special handling {4].

Referring to [4] for details, the following statements can
now be made. As a consequence of the fact that the above
rules conserve particle number but not particle momentum,
the lattice gas has just one, scalar, equation of motion.
Rule 2 gives rise to diffusion and rule 3 to the effect of
gravity with the required form, i.c., quadratic in the density
{see Eq. (3)). The particular choices made for y and for the
P.s determine the magnitude of the numerical coefficients in
the equation of motion, and all cases of practical interest
can be accomodated by a special set of simple formulas for
the p,;z. The probability matrix must satisfy

2d

Y pp=1  (a=1,.,2d),
" )
Y opp=1 (B=1,.,2d).

a=1

Finally, the matrix with elements p,; — 6,5, where &, is the
Kronecker delta, must be of rank 24— 1. This conditicn is
imposed by the necessity of eliminating the possibility of
spurious conservation laws [1, 4].

Two generalizations are introduced here, relatively to
[4]. The first generalization concerns the matrix (p,;) and
is aimed at simulating a diagonal permeability tensor with
three distinct components. This matrix is now written:

F,F o B, & & &
w F, ® B, @& ®
B, o F, ¢ o o
= 5
PV G B, & F, & & | (3)
W @ o @& F; B
a o o o By F;y
where
Fi={148)2—(d—1)a, (6)
B=(1—-8)2—(d— )&, i=123

For the two-dimensional model (d=2), the last two
columns and the last two lines in matrix (5) are dropped.
For an interpretation of the 4, and w see [4].

The requirement that the elements of the matrix (5) be
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real numbers between O and 1 implies the following
constraints on the §; and @:
06,1 < ! (i=1,23),
O<o<(1-6,)/2(d—1}),
5m=max{|51 L I62|s |53I}

(7)

(8}

The strict inequalities—to the right for 4, and to the left for
@—are imposed by the additional requirement that the
matrix with elements p,; — 8,5 be ol rank 24— 1.

The second generalization, aimed at simulating
inthomogeneity, is obtained by assuming that parameters J,,
@, and y are space dependent.

4. THE BOLTZMANN EQUATIONS AND
THEIR PERTURBATION SOLUTION

Let f.(r', ') be the probability of finding a particle at
node r’ and time ¢/, with velocity direction e,. The evolution
of f, is given by

flr' +ie, '+ )= f,(r, 1) =8, (9)
where the collision term £, can be found from the rules of
Section 3 governing particle movement. To find £2, one uses
Boltzmann'’s assumption of molecular chaos so that many-
particle distribution functions are expressed as products of
the one-particle distribution functions f,. The detailed
expressions of the 2, (« =1, ..., 2d) are givenin {4]. The 2,
are linear functions of the probabilities p,, and y, the coef-
ficients being nonlinear expressions of the f,. Due to the
local character of the rules of particle movement, the 2, do
not depend on the derivatives of the £,. Due to the particle
conserving property of these rules, the £2, satisfy

(10)

A differential version of the lattice Boltzmann equations (9)
is produced by assuming that the £, are infinitely smooth
and have appreciable variations over lengths L» A and
time-intervals T3 1. The ratio

AML=¢<1 (11)
is chosen as the small parameter which will eventually rule
the perturbation expansion and one assumes [ 1, 47 that

/T =2¢ (12)

Introducing dimensionless space and time coordinates

o=x//L,  t=tT, (13)
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one then finds that the differential version of Eq. (9) is

o

5 (0, e, Fifr, D = 2.7

n=1

(14)

The connection with hydrodynamics is made by defining the
lattice gas density p by

2d

pir,t)= 3 fur, 1)

a=1

{15)

As mentioned in the Introduction, the model assumes that
the density is low. Specifically, this is done by setting

plr, £} =2deg(r, 1), {16)

where ¢ is defined by Eq. (11). The factor 24 is included for
later convenience.

The equations of motion of the lattice gas are found by a
technique which is outlined, in its essential characteristics,
in [17. In the present case, the technique is based on the
application of regular perturbation theory to Egs. (14),
starting with the assumption that the solutions f, of these
equations can be found as expansions in powers of £ It is
shown in [4] that the correct form for this expansion is

fo=tp+f B+ 4 (17}

where the /1% obey
2d

L f=0

=1

a=2,3,.., {18)

so that the substitution of Egs. (17) in Eq. (15) yields
Eq. (16). An ingredient of the perturbation technique
described in [1] is the so-called muitiple-time formalism.
One assumes the existence of a succession of time scales
with a collective mode—and consequently an equation of
motion—corresponding to cach time scale. One assumes,
in effect, that the f, depend on times t,=1, ty=c¢t, ..
Ju(r, 12, t5, ..). This means that the differential time operator
in Eq. (14) can be written

€9, =€%0,+¢&3,+ . (19)
Only the first time scale (¢,) and its collective mode were
considered in [4]. In the present paper, the second time
scale (7,) and its collective mode will be considered as well.
Some indications about the third time scale will also be
given. The perturbation technique proceeds now as in the
familiar regular perturbation theory. One uses Eqgs. {17) and
{19) in Eqs. {14) and expands both sides of these equations
in powers of &. This results in expressions of the type
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1
Z ;" (8261+ Eemiai)nfz(re t)

n=1""

=&*Dig) + 6" DG S L)

+e* DG SO S+ (20}
Q,(1,)=*Q(e, f7)
+EQP SIS + (21)
where, as a consequence of Eq. (10},
2d
y e@=0 (=23, ..) (22)
x=1

Detailed expressions for the Q4 (a=2, 3) and for the D!
(¢=2, 3, 4) are given in [5]. The equality of the right-hand
sides of Eqgs. (20) and {21) is obtained by equating the coei-
ficients of the corresponding powers of &. This gives the £
and £ in terms of ¢. Specifically, the /** are obtained by
solving

QUG DY=DP($)  (a=1,.,2d—1),
24 ' (23)
3 7=

o=

The 2,..,Q) are not independent, according to
Eqgs. (22). Actually, only 2d — 1 of them are independent, so
that the f* can be made to satisfy the constraining equa-
tions (18) which are incorporated in the set of Egs. (23).
Further, Egs. {22) imply the condition for the computability
of the £,

j‘i DP(g)=0,

x=1

which, according to the expressions given in [5], is identi-
cally satisfied. In the same way, the /'3 are obtained by
solving

QI SO S =D S Aa=1,.,2d-1),
24 (24)
Y =0,
x=1

and the computability condition is

24
Y DO S =0

a=1

{23)

It can be seen that, as a gencral rule, the computability con-
dition of the /1 involves fl2~ ", fle=2 | f2 4 Thus,
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having obtained the /"', one can write the computability
condition of the f¢*, namely,

3 DY 1) =0

a=1

(26}

The last two computability conditions, Eqgs. (25) and (26),
are the equations of mass diffusion at time scales ¢, and ¢,
respectively [17]. Using the expressions in [5] one finds that
the two computability conditions are of the form

(27)
(28)

0,9+ S:(4) =0,
0,0+ S3()=0,

where §, and §; are differential operators in the space
variables. The flow equation up to order £* is now obtained
as a differential equation in terms of the original time-
variable #, by multiplying Eqs. (27) and (28) by & and &’
respectively, adding, and using relation (19j. It is
appropriate, at this point, to return to the actual particle
density p (Eq. (16)) and to introduce lattice space- and
time-variables by

§i=xi/A=x,]e,
(29)
8=1t/t=1t/c
The differential equation for p is then
ép @ dp 0 ( dp )
2L _(p, L\ {(D, L +Gp?
i i) o (P o
d 8,0)
—(d—=2y—{ D;— =0, 30
a2 (i3 e
where d=2 or 3, and
1146, 1 /d-1 v,y
D-_—’— i - _ i
' 2d1—5!+d2(1—5i (1—5,.)2)"
(vi=vs=Lv,=d—1), (31)

@ty (@1

G= .
d(1—5,) d(1—8,2"

One conciudes from the above derivation that, to lowest
and next-to-lowest order in the expansion of the Boltzmann
equations, the lattice gas defined by the rules of Section 3
obeys a flow egnation which is similar to the equation of
one-phase flow in a porous medium, Eq. (3), provided the
density p is small enough that the corrections of order p in
the D, and G coefficients can be neglected. These coeflicients
(with p =0) can be made to fit the values of the correspond-
ing coefficients in Eq. (3) by proper choices for the elements

581/104/2-3
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of the probability matrix (5). Note that the probability for
transverse scattering, &, is “unobservable”: it does not
appear in the coefficients of Eq. {30) and can be chosen
arbitrarily within the limitations of inequalities (8).

Setting p=0 in Egs. (31), one recovers the coefficients
found in [4], provided one accounts for the fact that the
flow equation in [4] is written for the ¢ of Eq. (16), with
variables x; and r of Eqgs. (29). Thus the corrections brought
about by the next-to-lowest order conserve the essential
character of the flow equation, their effect being restricted to
a modification of the coeflicients of diffusion and gravity by
extra terms proportional to the particle density, However, if
one continues the perturbation expansion of the Boltzmann
equations to order ¢°, one finds a flow equation that is no
longer of the same type as Eq. {3). Calculations performed
with y =0 and d=2, show that the flow equation then
contains, in addition to terms which can be taken to be
corrections of order p* to D, and D,, the following fourth-
order derivatives: d*p/0&?, 8*p/a¢3, and 8°p/aE20E%. Thus
the exact equation of motion of the lattice gas has, when
compared to Eq. (30), an additional differential operator
Z(p) on the left-hand side. Z(p) is due to the sum of
contributions of order ¢° and higher, in the perturbation
expansicn of the Boltzmann equations.

5. A NUMERICAL EXAMPLE

Given the essential assumption of small densities,
embodied in Eq. (16), the purpose of the present section is
to examine the deviations attached to numerical values
obtained with necessarily finite lattice densities. Specifically,
letting p, be a scale for the particie density of the lattice gas
in a particular calculation, one aims at an estimation of the
order of magnitude of the associated deviations which are,
a priori, expected to be of the order of magnitude of p.
To attain this aim, the results of the model are compared
to a known, exact solution. This solution is described in
Section 5.1. The lattice gas setup for the numerical calcula-
tion is described in Section 5.2, where the results of the
calculation are also given. The comparison of the numerical
results with the exact solution and the evaluation of the
deviations are found in Section 3.3.

5.1. An analytical solution

The full equation (30) has no known analytical solution
and one must turn to particular cases of this equation.
Philip {6] has given a solution in two dimensions to the
equation

V(KV®@)=0, (32)
where
K(X, Y)=1—-2acos(2nX) cos(2nY)

+ a* cos*(2nY)



318

=
- -

F1G, 3. The solution of Egs. (32) and (33) whena=1.

(0 a< 1 arbitrary), in the region {0< X, Y < 1}, with the
following boundary conditions: homogeneous Neumann
{(noflow)at Y=0and ], #=1at X=0,and d=0at ¥ =1.
When a=1, & is discontinuous at the corners and at the
center of the region of definition, i.e, at the same points
where K vanishes. The solution for this value of a is shown
on Fig. 3 (for closed-form expressions, see [6]). For the rest
of this paper, a=1.

5.2. A lattice gas setup

Equations (32), (33), and their boundary conditions, are
solved numerically by first setting up a lattice to cover the
region of definition (see Fig. 4). The lattice nodes are
located at points (X;, Y,) where, say,

17 1 17 1 .
’=N("i) yl_ﬁ(k’z) Gok=1,., N).

The function K(X, Y) is discretized as K, =K(X;, ¥,).
K(X, Y) is doubly periodic, with smallest period equal to 1
and, according to the sampling theorem {37, the set of
K, -values will represent K(X, ¥) uniquely if the sampling
frequency is larger than 8xn. This condition will always be
satisfied since the N-values used in practical applications
will always be larger than about 100,

The internal parameters of the lattice gas—essentially y
and the group (3, d,, @) determining the elements of the
scattering matrix (5)}—are chosen so that the coefficients
of Egq.(30) match those of Eg.(32), ie, G=0 and
D, =D, =K. Using Eqgs. (31), where the p-corrections are
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FIG. 4. Lattice for the numerical solution of Egs. (32) and (33). The
region {0< X, ¥< 1} is covered by an N x N lattice (the figure is drawn
with N = 60). Circles are boundary nodes, dots are ordinary nodes. Only
one column of ordinary nodes is shown, The square regions making up the
three horizontal stripes (ten regions per stripe) are averaging regions. See
Section 5.2 [or details. Referring to Eq. (30}, £, and &, are along X and 7,
respectively.

assumed negligible, onc easily finds that y=0, while
d, =38, =9, where § is discretized as

5;‘& = (4Kjk_ 1]/{4Kjk +1 )

As already mentioned, & is unobservable and is restricted
only by the inequalities (8). The choice

CD;::: (1- ’5jk|}/4

follows [4].

The boundary conditions of Section 5.1 are accom-
modated by reflecting particles from the upper and lower
boundaries, annihilating them at the right boundary, and
keeping a constant density p = p, at the left boundary. (This
constant value of the density at the left boundary is taken to
be the scale mentioned at the bepinning of Section 5.) For
more details, see [4, 5]. At zero time, the lattice is empty
(p=0).

The lattice gas is made to run until steady state is reached.
The number of time-steps necessary to reach steady state is
estimated by using the result [67 that the porous medium in
the region {0<JX, ¥Y<1} has an effective permeability
K.=1. It has been shown [4] that stecady state is then
approximately reached after N * time-steps. Starting at time-
step N2+ 1 and for all time-steps until N2+ 48,,, one
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records and stores the particle densities in each of the square
regions in Fig. 4. These particle densities (number of par-
ticles in each region divided by the number of nodes in that
region} are conveniently denoted by g(m, n, 8), where m
identifies the square region from left to right in each stripe
and runs from 1 to 10, » identifies the stripe and runs from
1 to 3, and 0 is the time-step and runs from N?+1 to
N2+ 40,,. (6, as defined in Eq. (29), is a continuous time-
variable with the interval between time-steps as a unit. It is
used here as a time-step counter to avoid the introduction
of an extra symbol.) For each square region one then
calculates the average and the standard deviation with the
data accumulated over 44,, time-steps:

1 1 N4 A8,
- ﬁ(m, h, B)a
Fo Aeav B=§1+1

1 NIy A8,

1
Sl 2

O=N?+1

PP = (34)

1/2
[p(m, n, 6)— <p>m,,]2} ,

e =

T
IIIX
ry

2.0
2 1

N—
(W)
S
m
o
~
4]
~0
e

FIG. 5. Exact values (shown as open squares), and numerical results
obtained with N =600 (shown with error bars extending one standard
deviation above and one below the average value), are plotted against m,
for the three values of n (sce Fig. 4).
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where the division by p, makes it possible to directly com-
pare {p ., 10 (@3, the average of & in averaging region
m belonging to stripe n. As shown in Fig. 4, all averaging
regions are 0.1 x 0.1 squares, and the three stripes have the
lines ¥ =0.05, 0.25, 0.50 as axes of symmetry.

A visual comparison of {p>,, to {&3,, is given in
Fig. 5. The lattice gas manages the discontinuities of the
solution remarkably well, considering that the premises for
the derivation of the flow equation are not valid there.
A quantitative comparison of the numerical results with the
exact values is, in principle, straightforward. For a chosen
density scale p, one would run the lattice gas model with a
value of N—the lattice dimension—large enough that the
standard deviations §,,, given in (34) are negligibly small so
that the values of {p?,,, are known with the same accuracy
as the values of {®),,. The deviations {p>,.,— (@,
would then give an indication about the accuracy of the
model at that particular value of p,. It is shown below
that the §,, are roughly proportional to 1/N. N-values of
the order of 10* would be mecessary to make the S,
appropriately small. On sequential (parallel) machines,
execution time is proportional to N* (N?) [4] and such
large values of N are impractical. The comparison of the
numerical results with the analytical values must, conse-
quently, be made in the presence of non-negligible standard
deviations §,,,,. This is done in the next section.

5.3. Statistical Evaluation of the Lattice gas Results

The estimations reported here are based on the numbers
which give rise to Fig. 5. In particular, N = 600 (for tables of
data at this and other values of N, see {5]). The evaluation
of the ¢{p>,. and S,,, has been described in the previous
section. Referring to Eq. (34}, it might appear that the S,,,
can be made arbitrarily small, regardless of lattice size N, by
increasing the number of time-steps for averaging, 46,,.
This 15 unfortunately not the case, it is not possible to com-
pensate for a low number of nodes in a space-averaging
region by increasing the time-averaging interval. Trial runs
with N =100 have shown that the §,,, slightly decrease
when A6, increases from 10° to 10? but remain thereafter
roughly the same, even for Af,, = 10°. All calculations
reported here were made with A48,, = 10%,

The §,,, will be called errors and it is emphasized that
these are due to statistical fluctuations in particle nunibers.
The discrepancies between calculated and exact values,
which are due to the difference between the flow equation of
the lattice gas and the target differential equation (refer to
the end of Section 4, starting at Eq. (30)), will be called
deviations. The problem to be solved here is to evaluate the
deviations in the presence of the errors.

A first assumption is that the contributions due to 2(p)
are negligible. This is not trivial, in view of the dis-
continuities in the exact solution (Fig. 3). However, the



320

contributions of @{p) are probably largest at the few
discontinuities and, according to Fig. 3, are small enough to
be masked by the fluctuations in the gas density. It would
follow, according to Eqgs. (31), that the deviations vanish
with p. A second assumption {confirmed by more detailed
calculations [5]) is that the deviations are small compared
to py. Using these assumptions one can define a mean devia-
tion ¢ as a linear function of the density, by setting d,,, =
{pYmm— P, plotting the d,,, against the {(p),,,, and
fitting a straight line d=ap + b, where the o and & are
estimated by minimizing

X2 = ‘Z (dmn - a(P >mn - b)z

S

mn mn

Errors, da and 4b, on the a2 and b can also be
calculated [2].
One finds, with the data of Fig. 5:

a=0.048 £ 0.015, b=0.001 £+ 0.005, XI. =817

min —

The value of & is consistent with 0 and confirms that
the deviations vanish with the density. The smallness of
X —minimum of X7, and y° statistic with 28 degrees of
freedom—confirms that the departures from linearity, due
to the contributions of %(p}, are small compared to the
errors due to statistical fluctuations. The size of da is thus
mostly due to the sizes of the S,,,. One may conclude that
the relative deviation, d/p, is (5 +2)%.

Finally, it should be mentioned that experiments carried
out with the lattice gas at different values of pyand N [5]
show that the standard deviations are, roughly, inversely
proportional to {N2pg)'/%, 1e., to the square root of the
number of particles, a result which is familiar from Monte
Carlo calculations.

6. CONCLUSIONS

The lattice gas model presented here and in [47 is a useful
alternative to existing numerical methods for the numerical
solution of the equation of one-phase flow in a porous
medium. It can also be used to solve the heat equation and
general elliptic equations of type (32). The advantages are
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the same as with the other lattice gas models referred to in
[1], nameiy that of solving a specified differential equation
without accumulation errors and for practically any form of
boundary. In addition, the example presented here tends
to show that discontinuous sclutions are easily managed.
The performances with less well-behaved permeabilities
(small values, large gradients, discontinuities) remain to be
explored. Concerning the boundary conditions, experience
will show whether the various boundary conditions
devised in relation with differential equations—Dirichlet,
Neumann, and variations of those—can easily be imple-
mented. The main disadvantage of the lattice gas model is
the one shared with Monte Carlo methods: many particles
are necessary to decrease the errors due to statistical
fluctuations, so that large lattices are necessary. The
following orders of magnitude roughiy characterize the
model: relative accuracies of the order of 5% should be
attainable with lattice sizes of the order of 10° nodes per
dimension and a density scale of about 0.1, Finally, con-
cerning the practicality of the calculations, especially when
it comes to computing time, it is obvious that massively
parallel computers are ideally suited, although computers
with vector facilities are a workable alternative in situations
where results can be obtained after a moderate number of
time-steps.
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